
1

2

3

We don’t bundle all the JavaScript together from the start. Instead,
we have a core JS module which includes our layout optimization
engine. Then, we include additional modules such as header bidding,
new ad formats, and  automatic in-content ad placement, based on
what the publisher wants. This helps us reduce the bundle size and
ensure that publishers only load the scripts they are actually using. In
addition, tree-shaking is used for dead code elimination before run
time, saving disk and CPU usage on the client-side.

Next, we use a CDN-based delivery for our JavaScript code. This
means that instead of serving the JavaScript from our servers, we use
a high-speed content delivery network which keeps mirror copies
of our code. This CDN delivers the JavaScript to the publisher’s
website from a server nearest to their actual physical location. So for
instance, if a website hosted in New York, the JS will also be delivered
from a server in New York. This reduces delivery latency. Our CDN
also uses GZip compression to further reduce bundle size.

Finally, we use lazy loading during code execution to ensure that only
essential JS assets are delivered to the user’s browser. Lazy loading
is a technique that loads assets (scripts, files, images…) only when
they are needed by the  browser. This is opposed to synchronous or
asynchronous delivery, where assets load regardless of whether or
not they are needed on-page. We deploy lazy loading for (1)
AdPushup JavaScript and (2) ad units served on publisher webpages,
improving load times during code execution and ad delivery.

AdPushup's ad serving technology is delivered via a JavaScript code
during page load. We call this AdPushup JavaScript (APJS). Publishers
often ask us about the speed and SEO impact of running APJS. We use a
number of code optimization techniques to speed up the JS during
generation, delivery, and execution. This includes the following:

About AdPushup JavaScript

Modular Code Generation

CDN-based Delivery

Lazy Loading Script



Page Speed & SEO Impact Analysis
In order to demonstrate the real-life impact of using APJS on a website’s
page speed and search performance, we conducted a test on five
websites within our publisher network, our methodology is shared
below. We encourage you to recreate the tests and verify the results.

Our Methodology
We selected five publisher websites in our network at random
Then we used Lighthouse, a page performance audit tool by developed by Google,
to analyze the impact of APJS on page load speed and on-page SEO. Lighthouse
can be used in multiple ways; we used it from the Chrome DevTools
In the control group we have websites which are currently using AdPushup; in the
experimental group, we have the same websites with AdPushup code disabled.

Re-creating the Test
For the control group, open one of the websites that you wish to audit
Open Chrome DevTools and navigate to the Audits tabSelect ‘Desktop’ for Device,
check only ‘Performance’ for Audits and disable throttling; Run the test
The results obtained are for the site’s performance while using AdPushup; a
detailed description of the metrics is given below
To run the analysis for the experimental group, navigate to the network tab and
filter the requests by the name of adpushup.js
Right click on any such request and block the request URL
Go back to the Audits tab and repeat the analysis under the same conditions
Compare the results!

Metrics Used
First Contentful Paint: First Contentful Paint marks the time at which the first
text or image is painted.
Speed Index: Speed Index shows how quickly the contents of a page are visibly
populated.
Time to Interactive: Time to interactive is the amount of time it takes for the
page to become fully interactive.
First Meaningful Paint: First Meaningful Paint measures when the primary
content of a page is visible. 
First CPU Idle: First CPU Idle marks the first time at which the page's main thread
is quiet enough to handle input.
Max Potential First Input Delay: The maximum potential First Input Delay that
your users could experience is the duration, in milliseconds, of the longest task.

https://docs.google.com/spreadsheets/d/14LIOI3OpLAtagMUOMTctbqWA0UWkM1NKP8lf_8P5_6Q/edit?usp=sharing


Page Speed Results

First Meaningful Paint is the time it takes for the primary content of a page to
become visible. In our test, this value was higher by just 140ms on average (with
the difference being 0s in three instances) for websites in the control group. 
Time to Interactive, measures the amount of time it takes for a page to become
fully interactive, this value was found to be higher by ~400ms on average for
websites in the control group, with one page with no change in TTI at all and two
others with less than 200ms variation. Considering that the average TTI value was
3400ms in the experimental group, a 400ms change is a blink of an eye. 
First Input Delay is the time from when a user first interacts with a site to the
time when the browser responds to that interaction. The change in FID upon
adding APJS was a mere 40ms—a humanly imperceptible time difference.

Although Lighthouse yields a comprehensive page speed report consisting of six
different metrics, the key ones are First Meaningful Paint and Time to Interactive.
 

Firs
t C

onten
tfu

l P
ain

t

Firs
t M

ea
ningful P

ain
t

Spee
d In

dex

Tim
e t

o In
ter

ac
tiv

e

Firs
t In

put D
ela

y

4s 

3s 

2s 

1s 

0s 

Control (AdPushup JS enabled) Experiment (AdPushup JS disabled)

Average values for key page speed parameters



Structured data is valid
Has a <meta name="viewport"> tag with width or initial-scale
Document has a <title> element
Page has successful HTTP status code
Links have descriptive text
Page isn’t blocked from indexingrobots.txt is valid
Document has a valid hreflang
Document has a valid rel=canonical
Document avoids plugins
Document uses legible font sizes
Tap targets are sized appropriately

The test for SEO was carried out using the Lighthouse toolkit that measures the
page’s SEO performance based on certain predefined programmatic tests, including:
 

 
As it can be seen, these parameters are objective in nature. Given that they have
been cherry picked by Google to gauge the impact of on-page code on search
performance, this is an ideal way to gauge the SEO impact of AdPushup’s script.
 
Depending on whether a websites passes these tests or not, a cumulative weighted
score is awarded to them. It’s noteworthy that the AdPushup JS script had zero
impact on each and every website’s on-page SEO score in the study.

About AdPushup
AdPushup was formed in 2014 with a simple idea: While A/B testing was
becoming popular, no one was using it to optimize publisher-side ad layouts. Our
founders built and launched a prototype to get proof-of-concept, which resulted in
double-digit revenue growth for our first website. Since then, we’ve garnered top
media mentions, raised multiple rounds of funding, and expanded to being a one-
stop revenue optimization platform for web publishers. In addition to being a Google
NPM AdX Partner, we’re a Microsoft Ventures backed startup, and winner of
the NASSCOM Emerge 50 award. Today, we serve and optimize over 4 billion
monthly ad impressions for our 300+ publishing partners.

On-page SEO Results

0% SEO

Impact


